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Abstnct. Noteworthy analytic propenies of the Dym-Kmrkal equation, such as the weak 
Painlev6 property and the Pogrehkav propeny (a second-order pole at infinity), are proven 
to he exactly the image of the usual Painlev6 pxopeny under the Ibragimov transformation, 
The transformed Painlev6 analysis is carried out for two infinite sets of  evolution equations 
similar to the Dym-Kruskal equation. Only four of the equations pass the test, being known 
and integrable. 

Despite the absence of any proof, the Painlev6 property (PP) for partial differential 
equations (PDES) [I]  is generally believed to be a sufficient condition for 'integrability' 
of PDEE [2]. Almost all P D E ~  known to possess the PP are either integrable by some 
modifications of the inverse scattering transform or exactly linearizable (see e.g. [2 ,3 ]  
and references therein). Probably the most impressive confirmation of a sufficiency of 
ihe PP for inisgrabiiiiy or' P D E ~  was given in i4j where iiie Painievi anaiysis of a 
three-parameter class of evolution equations selected integrable cases only. 

When the PP is used for detecting integrable PDES, the analysis of all possible 
movable singularities is of crucial importance [2]. Many authors tested only those 
points at which a dependent variable went to infinity but ignored points at which the 
order or the type of a PDE changed (e.g. appendix A in [ I ]  and [SI); certainly, this 
..,,..mrl a~+;,.:-... -L..:....-I .,_-_ : e s a ~ - ~ ~ t a m n - n o  ,...t..r~i ~ n - - ~ - . . - -  I:-...a.~n " - : - - - . . A  

analysis of PDEI is usually realized by means of power expansions, one needs much 
caution in order not to overlook essential singularities. For instance, both equations 
U ,  = U,, and ut = U,,, + U :  pass the Painlev6 test [ 13 'by default', but the former, being 
linear, has no movable singularities, whereas the latter has a movable dominant 
logarithmic singularity in its general solution. In this letter, we use the Weiss-Kruskal 

logarithmic branch points and simple in calculations. 

bLIUIbU b I . L I b L I L I I  111 YU",U""'J , , u " - L , , L c ~ , a Y ' c  U P D C I  Y"1J L",. I'IIUITU*CI) J l l lCC ills C'l,,,,C"C 

-.D" glonrithm ......I. ( 2 -  \-" fnrmnlntd I-..... I. _.-- j; [2)) which is sensitiyc a!gcbrzic zfid n=x&rL;nax: 

The Dym-Kruskal equation [7] 

U, = U uvVy (1 )  
3 

U = u(y, f ) ,  has no PP [XI. However, (1)  has other noteworthy analytic properties such 
as the weak PP [8,2] and the Pogrebkov property [91. The weak PP means that algebraic 
branch points are the only movable singularities of the general solution of ( I ) ,  i.e. 
Weiss-Kruskal expansion U =XTm0 S,(t)(y - P( t ) )c2+k) '3  satisfies (1) with arbitrary p, 
S2 and Sa. The Pogrebkov property means that the general solution of (1) has a 
second-order pole at the infinitely removed point, i.e. expansion U = Xy=o S,( t ) y2 -k  
satisfies (1)  with arbitrary So, 6, and S1. These properties differ from the usual PP 
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which bans movable branch points and fixes no structure of a solution at infinity. What 
is the nature of such exotic analytic properties of the Dym-Kruskal equation? In this 
letter, they are proven to be exactly the image of the usual PP under a certain map of 
evolution equations. After proper definition, such a ‘transformed Painlev6 property’ 
(TPP) is applied to analysis of two infinite sets of evolution equations. 

The lbragimov transformation [lo] 

(5 1, I))”(Y, 1, U(Y, 1)) y = u  U = ux (2) 

(3) 

to the Dym-Kruskal equation (I). The polynomial form of (3) u,u,, -fuL-u,u, = 0  
indicates that the PainlevC test for (3) consists in analysis of two possible singularities, 

constructing recursion relations, finding resonances and checking compatibility condi- 
tions at resonances brings us to the corresponding Weiss-Kruskal expansions: 

maps the equation 
3 -1  2 

U, = U,,, -xu, U, 

!! + m and XI -+ 0. n . e  .sua! way [2j af determining !e.ding behzvin..n ar sn!a!in”s, 

u = E O ( x - a ) - ’ + E , + ~ E O a ’ ( x - a ) + h a b ( x - a ) 2 + .  . . 
U = E ~ - & E ~ ( x  -a )3-&i~ha’(x  - a)’+&&(x - a)6+ E,(X - a)’+. . . 

(4) 

(5) 
where the prime denotes the r-derivative, functions air), ~ ~ i . 1 )  and & , ( I )  are arbitrary 
in (4), and functions a ( t ) ,  E o ( f )  and € , ( I )  are arbitrary in ( 5 ) .  Thus, (3) has the PP. 

Let us apply transformation (2) to expansion (4). Since y = u ,  (4) determines y as a 
function of x and I, y(x, I). Differentiating (4) with respect to x, we get 

u(x, 1 )  = U, = - E ~ ( x - ~ ) - ~ + ~ E ~ ~ ’ + ~ E ~ ( x - ~ ) + .  . . . 
Removing step by step x from expansions y(x, 1 )  and u(x, I), we find u(y, I): 

U = -E,’y2+2E;l&,y+ (:€,a‘- E~’&:)+~Eo&;ly-’+. . . . (6)  

The same manipulations with (5) bring us to 

E ~ ( Y  - E ~ ) ~ / ~  
U = - ( ; ) 2 / 3 ( E ; l ) ” 3 ( y - E 0 )  2/3-2 &) 3 413 ( E b ) - l / 3 a ’ ( y - E 0 ) 4 / 3 - ( 3 ) ’ / 3 ( E b ) - 5 / 3  ” 

+ ( 7 2 0 ( E t ! - 2 E i + ~ ! a ‘ ) 2 ( E ~ ) - ’ ! ! y - e ~ ! * + .  , , , (7) 

Coefficients at y2 ,  y’ and yo in (6) are arbitrary due to arbitrariness of E ~ ,  E ,  and a’. 
In (?), coefficients at (y - eo)*/’ and (y - are arbitrary due to arbitrariness of a’ 
and E , ;  also function is arbitrary which determines the ‘singularity manifold’. 
Expansions (6) and (7) obviously express the Pogrebkov property and the weak PP of 
the Dym-Kruskal equation respectively, and these properties are exactly the image of 
the usual PP under the Ibragimov transformation. Vice versa, the PP oi (3) can be 
derived from the expansions expressing the analytical properties of (I). This is achieved 
bytheinversionof(2)x=j (u(u .  I ) ) - ’du+n( t )  (a isa‘constant’ofintegration) which 
determines an expansion of U by powers of x - a( I). 

Let us generalize our observations. Suppose an expansion like (4) describes a pole 
of order p.  i.e. U = E ~ (  I)(X - a( I ) ) - ~  + . . . , p = 1,2 ,3 , .  . . . Then the corresponding 

pole at infinity) at p = 1 only, whereas at p > 1 it describes an infinitely removed 
algebraic branch point of degree -( p +  l)/p.  Any other branching of U at infinity leads 
to movable branch points of U banned by the PP. Similarly, expansion U =  
Eo( 1 )  + eP+,( t ) ( x  - a( 1 ) )  p+l + , . . , p = 1,2,3,  . . . , which describes the behaviour of U at 

l O + l > / O  expansion iiiie (6) U = Go,(ijy-.  ” .  expresses the Poprebio~ piopeiiy (a second-oidei 
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u,+O, corresponds to ~ = S ~ ( t ) ( y - p ( l ) ) ~ ' ' ~ + ' ~ + .  , . . Any other movable branching 
of U leads to banned branching of U. This generalization is necessary because the 
Ibragimov transformation connects very wide classes of evolution equations. One can 
prove easily that (2) maps any equation 

u , = X ( r ( l ) ~ ~ f ~ ~ ~ ( t ,  U, U,, UT'u, , .  . . , ( U ; ' D , ) ~ - ~ U ~ )  

u , = u ( t ) u +  uiD,s(t, y, U, U,, . . . , uN-J 

(8) 

(9) 

to corresponding equation 

where order N and functions U and s are arbitrary, uk =J'u /JX* ,  uk =Jku/Jyk,  k =  
0,1 ,2  ,..., % = U ,  uo=u, D , = J / J x + Z ~ = ' = , u , + , J / J u ,  and D , = J / J y + Z ~ = n u ~ + l J / J u , .  
Let us confine ourselves to such equations (8) for which the Painlev6 test consists in 
analysis of singularities at U + m and U, + 0 only. (This is achieved, e.g., if right-hand 
sides of corresponding equations (9) are differential polynomials of form uMuN f. . . .) 
Then the same consideration as for equations ( 1 )  and (3) allows us to prove that (8) 
has the PP if and only if (9) has the TPP formulated as follows: 

(i) Every q (Re g > l), such that U = So( t)y" +. . . is the leading behaviour of a 
solution of (9) at y-00, satisfies q = ( p +  l ) / p  with positive integer p, and expansion 
U =ZFm0 Sk(t )y 'pt ' -k ) /p  satisfies (9) with compatible recursion relations. For at least 
one such q, the expansion contains N arbitrary functions. 

(ii) Every q (O<Req<l ) ,  such that u = S o ( t ) ( y - - p ( l ) ) ' +  ... is the leading 
behaviourofasolutionof(9) aty-p(l)+O,satisfies q = p / ( p + l )  with positiveinteger 
p, and expansion U = ZF=n S , ( t ) ( y - p ( t ) ) ' p + k ' ~ ' p + ' )  satisfies (9) with compatible recur- 
sion relations. For at least one such q, the expansion contains N arbitrary functions. 

Let us consider the following evolution equation, similar to the Dym-Kruskal one, 

w, = W * W N  (10) 
where w = w(y,  I ) ,  wN = JNw/JyN,  constant p is arbitrary, N >  1.  Let (10) have an 
infinite algebra of generalized symmetries [ 111, as the Dym-Kruskal equation does 
[12]. Then, according to [13], equation (10) has conserved density w - * / ~  necessarily, 
i.e. a functionf(w, w l r . .  . , wN-, )  exists such that (w-""), = DJ Since the kernel of 
the Euler operator E = Z ~ = p = , ( - l ) ' D ~ J / J ~ k  coincides with the image of 0, [ll], we 
have the equivalent condition E(  w "w,? ) 0; where U = p - p/ N - 1; which is satisfied 
if and only if U = 0 at N = 2,3,4,5, . . . and U = 1 at N = 3 ,5 ,7 ,9 ,  . . . . The selected 
equations can be represented in polynomial form U, = uNuN +.. . by substitution U = 
W ~ / N :  

0, = n-'"*D;+l~" (11) 
u,=n-l .+ZD2"+' n 

(12) 0 Y O  

n = 1,2,3,4, ,  . . . Equations ( 1 1 )  at n = 1,2 and (12) at n = 1,2 do possess infinite 
algebras of generalized symmetries [12-141. However, one knows nothing about the 
equations at n 2. Taking into account that (12) at n = 1 is the Dym-Kruskal equation, 
let us investigate which of equations (11) and (12) possess the TPP too. Equations (11) 
and (12)  belong to class (9) at u = 0. However, the corresponding equations of class 
(8) are very complicated at large n. Therefore the transformed Painlev6 analysis of 
( 1 1 )  and (12) is easier than the equivalent usual PainlevC analysis of corresponding 
equations U, = uN + . . . . 

Equations (11) satisfy condition (i) of the TPP 'by default', i.e. their solutions have 
no leading behaviour U = So( t )y" + . . . with Re q > 1. This is a dangerous symptom 
indicating that corresponding equations U, = untl +.. . may possess movable dominant 
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essential singularities at U +m. However, condition (ii) solves the problem. Indeed, 
admissible q are I/n,  2 / n , .  . . , ( n  - l ) / n  and n / ( n  + 1) there, and some of them have 
no required form p / ( p + l )  when n > 2 .  This means that corresponding equations 
U, = un+, +. . . at n > 2 admit movable algebraic branch points at U, + 0. The remaining 
equations, i.e. (11) for n = 1 and 2, U, = U u2 and U, = u3u3+3v2u,u2, correspond to 
linear ones, U, = u2 and U, = u3, and therefore need no further analysis. 

Equations (12) also possess the TPP only if n = 1 and 2. Indeed, condition (i) of 
the TPP gives q = ( n  + 1)/ n, ( n  + 2) /  n, . . . , 2  which leads to movable algebraic branch 
points for corresponding equations U? = U,"+, +. . . when n > 2. The Dym-Kruskal 
equation ( n  = I )  has the TPP, and we need to investigate (12) at n = 2 only: 

U, = u ~ u , + 5 u ~ ( u , u 4 + 2 u ~ u 3 ) .  0 3 )  

Checking condition (i) of the TPP for (13). we find that q =$ and 2, p = 2  and 1, 
recursion relations are compatible and determine expansions U = X.FP=, S,( f)y0-x1/2 
with four arbitrary functions So, S,, S,, S6 and U =E& S,( f )y2-*  with five arbitrary 
functions So, S,, S,, S,, 8,. Condition (ii) is also satisfied for (13), namely: q =+ and 
i, p = 4 and 1, recursion relations are compatible and determine expansions U = 
~ ; p = o S , ( f ) ( y - p ( f ) ) ' k + 4 ' / 5  with four arbitrary functions p ,  Sa, S,, S,* and U =  
X ; P = o S , ( f ) ( y - p ( t ) ) ' X + 1 ) / 2  with five arbitraryfunctions p ,  So, S,, Sa, &.Thus, (13) has 
the TPP. 

Equations (11) and (12)  possess the TPP only if n = 1 or 2. Does it mean that the 
equations are non-integrable at n > 2?  Certainly, no. Any analytic property of PDES is 
strongly non-invariant under transformations of PDES and cannot be considered as a 
necessary condition for integrability therefore. On the contrary, many exotic analytic 
properties of P D E ~  can be sufficient for integrability to the same extent as the PP. The 
correspondence between the PP and the TPP demonstrates this. 
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